This week offers two interesting papers about the TRAPPIST-1 planets, one from Hubble data looking at the question of hydrogen in potential planetary atmospheres, the other drawing on data from the European Southern Observatory's Paranal facility as well as the Spitzer and Kepler space-based instruments. We'll look at the Hubble work this morning and move on to the second paper tomorrow. Both offer meaty stuff to dig into, for we're beginning to characterize these seven planets, which form a unique laboratory for the study of red dwarf systems. Published in Nature Astronomy, the Hubble results screen four of the TRAPPIST-1 planets -- d, e, f and g -- to study their potential atmospheres in the infrared, using Hubble's Wide Field Camera 3 in data collected from December 2016 to January 2017. The data allow us to rule out a cloud-free hydrogen-rich atmosphere on three of these worlds, while TRAPPIST-1g needs further observation before a hydrogen atmosphere can be conclusively excluded....
Detection of Extragalactic Planets?
I was pleased to be a guest on David Livingston's The Space Show last week. David's questions are always well chosen, as were those of the listeners who participated in the show, and we spoke broadly about the interstellar effort and what it will take to eventually get human technologies to the stars. The show is now available in David's archives. I suspect that if David and I had spoken a couple of days later, the topic would have gotten around to gravitational microlensing, and specifically, the news about planets in other galaxies. On the surface, the story seems sensational. In our own galaxy, we can use radial velocity and transit studies on stars, but here our working distances are constrained by our method. The original Kepler field of view in Cygnus, Lyra and Draco, for example, contained stars ranging from 600 to 3000 light years out -- get beyond 3000 light years and transits are not detectable. Image: The Sun is about 25,000 light years from the center of the galaxy, about...
The Likelihood of Massive Exomoons
Are there large moons -- perhaps Earth-sized or even bigger -- around gas giant planets in habitable zones somewhere in the Milky Way? It’s a wonderful thought given how it multiplies the opportunities for life to find a foothold even in systems much different from our own. Centauri Dreams regular Andrew Tribick recently passed along a new paper that addresses the question in an interesting way, by modeling moon formation and orbital evolution under widely varying conditions of circumplanetary disk composition and evolution. We’re entering new terrain from this site’s perspective, because I can’t recall going deeply into circumplanetary disks before, at least not in the exoplanet context. But Marco Cilibrasi (Università di Pisa, Italy) and colleagues take us through the necessary background issues. We have two primary models for giant planet formation inside a protoplanetary disk, one being core accretion, when collision and coagulation occurs among dust particles to build up a...
M-Dwarf Planets: ExTrA and TRAPPIST-1
A new project called Exoplanets in Transits and their Atmospheres (ExTrA) has been set in motion at the European Southern Observatory’s site at La Silla (Chile). Funded by the European Research Council and the French Agence National de la Recherche, ExTrA’s three 0.6-metre telescopes will be operated remotely from Grenoble, France. This is an exoplanet transit effort centered around finding and characterizing Earth-sized planets orbiting M-dwarf stars. Not an easy task from the ground, as lead researcher Xavier Bonfils makes clear, though if you’re going to attempt it, northern Chile offers optimum conditions: “La Silla was selected as the home of the telescopes because of the site’s excellent atmospheric conditions. The kind of light we are observing — near-infrared — is very easily absorbed by Earth’s atmosphere, so we required the driest and darkest conditions possible. La Silla is a perfect match to our specifications.” To do its work, ExTrA weds spectroscopic information to...
Planet Mimicry: Disk Patterns in Infant Systems
The wrong initial assumption can easily lead anyone down a blind alley. The problem comes across loud and clear in new work from Marc Kuchner (NASA GSFC) and colleagues, which Kuchner presented at the recent meeting of the American Astronomical Society in Washington. At issue is the matter of the disks of gas and dust around young stars, in many of which we can find patterns such as rings, arcs and spirals that suggest the formation of planets. But are such patterns sure indicators or merely suggestions? Kuchner's team has been looking at the question for several years now, presenting in a 2013 paper the possibility that a phenomenon called photoelectric instability (PeI) can explain the narrow rings we see in some disk systems. PeI happens when high-energy ultraviolet light strikes dust and ice grains, stripping away electrons. The electrons then strike and heat gas in the disk, causing gas pressure to increase and more dust to be trapped. Rings can form that begin to oscillate,...
K2-138: Multi-Planet System via Crowdsourcing
As Centauri Dreams readers know, I always keep an eye on the K2 mission, the rejuvenated Kepler effort to find exoplanets with a spacecraft that had originally examined 145,000 stars in Cygnus and Lyra. Now working with different fields of view, K2 has examined a surprisingly large number of stars, some 287,309, according to this Caltech news release. Digging around a bit, I discovered that each 80-day campaign brings in data on anywhere from 13,000 to 28,000 targets, all released to the public within three months of the end of the campaign. In the paper we'll discuss today, this influx is referred to as a 'deluge of data.' Our datasets just continue to grow in a time of exploration that seems unprecedented in scientific history. I've heard it compared to the explosion in knowledge of microorganisms after their detection by van Leeuwenhoek in the 17th Century, though of course it also conjures up thoughts of early exploratory voyages as humans pushed into hitherto unknown terrain....
Substellar Objects in Orion
Although I carry on about upcoming observatories on the ground and in space, I never want to ignore the continuing contribution of the Hubble telescope to our understanding of planet and star formation. As witness the latest deep survey made by team lead Massimo Robberto (Space Telescope Institute) and colleagues, which used the instrument to study small, faint objects in the Orion Nebula. At a relatively close 1,350 light years from Sol, the nebula is something of a proving ground for star formation, and now one that is yielding data on small stars indeed. Identifying some 1,200 candidate reddish stars, the survey tapped Hubble's infrared capabilities to extract 17 candidate brown dwarf companions to red dwarf stars, one brown dwarf pair and one brown dwarf with a planetary companion. We also learn that a planetary mass companion to a red dwarf has turned up as well as, interestingly enough, a planet-mass companion to another planet, the duo orbiting each other in the absence of a...
PicSat: Eye on Beta Pictoris
To understand why Beta Pictoris is receiving so much attention among astronomers, particularly those specializing in exoplanets, you have only to consider a few parameters. This is a young star, perhaps 25 million years old, one with a well observed circumstellar disk, the first actually imaged around another star. We not only have a large gas giant in orbit here, but also evidence of cometary activity as seen in spectral data. ? Pic is also relatively nearby at 64 light years. Image: This composite image represents the close environment of Beta Pictoris as seen in near infrared light. This very faint environment is revealed after a careful subtraction of the much brighter stellar halo. The outer part of the image shows the reflected light on the dust disc, as observed in 1996 with the ADONIS instrument on ESO's 3.6 m telescope; the inner part is the innermost part of the system, as seen at 3.6 microns with NACO on the Very Large Telescope. The newly detected source is more than 1000...
Exoplanet Prospects at Earth-based Observatories
Although I often write about upcoming space missions that will advance exoplanet research, we're also seeing a good deal of progress in Earth-based installations. In the Atacama Desert of northern Chile, the Extremely Large Telescope is under construction, with first light planned for 2024. With 256 times the light gathering area of the Hubble instrument, the ELT is clearly going to be a factor in not just exoplanet work but our studies of numerous other astronomical phenomena, from the earliest galaxies in the cosmos to the question of dark energy. Today we learn that the first six hexagonal segments for the ELT's main mirror have been cast by the German company SCHOTT at their facility in Mainz, Germany. We're just at the beginning of the process here, for the primary mirror is to be, at 39 meters, the largest ever made for an optical-infrared telescope. 798 individual segments -- each 1.4 meters across and 5 centimeters thick -- will go into it, working together as a single...
A Pulsar Habitable Zone?
Life and pulsars don't seem to mix. But science fiction hasn't shied away from making the connection, as witness Robert Forward's Dragon's Egg (Ballantine, 1980). In the novel, a species called the cheela live on the surface of a neutron star, coping with a surface gravity 67 billion times stronger than that of Earth. An interesting consequence: The cheela live at an accelerated rate, going from the development of agriculture to high-tech in little more than a month, as perceived by the human crew observing the course of their rapid development. Now we have news that two astronomers are considering habitable planets in orbits around pulsars, a venue that to my knowledge Forward never considered, but perhaps more recent science fiction writers have (let me know if you have any references). Alessandro Patruno (Leiden University), working with Mihkel Kama (Leiden and Cambridge University) see reasons for thinking that life might emerge in such an environment, though the kind of...
What We Can Rule Out at Alpha Centauri
One of the reasons to pay attention to spectrograph technologies -- and we recently talked about ESPRESSO, which has just achieved ‘first light’ -- is that we’re reaching the inflection point when it comes to certain key observations. Finding planets around Centauri A and B has been the gold standard for a number of researchers, and as Debra Fischer (Yale University) points out, we’re just now getting to where spectrographic technology is up to the challenge. Chile is where much of the action is. Here we find ESPRESSO installed on the European Southern Observatory’s Very Large Telescope at Paranal. But Fischer’s team has built CHIRON at Cerro Tololo, and the paper likewise relies on data from the Geneva team’s HARPS and the UVES installation at the Very Large Telescope Array in the United States. Working with Yale’s Lily Zhao, Fischer has re-examined older data with an eye toward turning once again to Centauri A and B with a new round of observations beginning the year after next....
GJ 436b: Polar Orbit May Flag Unseen Companion
Any thought that our Solar System offers a template for other stellar systems has pretty much vanished in the panoply of system architectures now exposed to our observation. But it seemed rational, in the days before we knew of the existence of other systems, to imagine that if they were there, they would be more or less well ordered. Planets presumably orbited in the equatorial plane of their star, all more or less co-planar (and if Pluto didn't quite fit the bill, that was just more evidence of the features that would one day cause it to become a 'dwarf planet'). But looking at the eight planets that remained after Pluto's 'demotion,' we see planets that are co-planar within about 7 degrees of difference. And as Ethan Siegel (Lewis & Clark College) points out, if we take Mercury out of the mix, the deviation from the plane is only about two degrees (Mercury's inclination is 7 degrees). Likewise, planets in our system line up well with the Sun's rotation axis. But some systems...
Machine Learning: Potent Tool Discovers Two New Worlds
NASA's news conference announcing the discovery of Kepler-90i and Kepler-80g was a delightful validation of a principle that has long fascinated me. We have such vast storehouses of astronomical data that finding the time for humans to mine them is deeply problematic. The application of machine learning via neural networks, as performed on Kepler data, shows what can be accomplished in digging out faint signals and hitherto undiscovered phenomena. Specifically, we had known that Kepler-90 was a multi-planet system already, the existing tools -- human analysis coupled with automated selection methods -- having determined that there were seven planets there. Kepler-90i emerged as a very weak signal, and one that would not have made the initial cut using existing methods of analysis. When subjected to the machine learning algorithms developed by Google's Christopher Shallue and Andrew Vanderburg (UT-Austin), the light curve of Kepler-90i as well as that of Kepler-80g could be...
Modeling an Exoplanetary ‘Mars’
Until we can start observing the atmospheres of rocky worlds around red dwarf stars, we're left to extrapolate conditions there as best we can. New work discussed at the fall meeting of the American Geophysical Union on Dec. 13 recounts one such attempt, using the planet Mars as a surrogate for a similar world in habitable zone orbit around an M-dwarf. The work draws on data from the MAVEN (Mars Atmosphere and Volatile Evolution) mission, launched in 2013 and now orbiting the Red Planet. Designed to study the deterioration of its atmosphere over time, MAVEN offers insights into exoplanets that are derived from plugging in different stellar values. Image: To receive the same amount of starlight as Mars receives from our Sun, a planet orbiting an M-type red dwarf would have to be positioned much closer to its star than Mercury is to the Sun. Credit: NASA/GSFC. MAVEN co-investigator David Brain (University of Colorado, Boulder) discussed MAVEN data at the meeting, noting that the planet...
A Second Super-Earth for K2-18
The transiting red dwarf K2-18 is about 111 light years out in the general direction of the constellation Leo, with a mass of 40 percent of Sol’s. A super-Earth, K2-18b, was detected here in 2015 through light curve analysis of data from the reconfigured Kepler K2 mission, and we now have the first measurement of the planet’s mass, drawing on radial velocity data from HARPS. The two planet detection methods in conjunction thus firm up our knowledge of a possible habitable zone planet. But they also reveal, in the analysis of Ryan Cloutier (University of Toronto) and colleagues, a second super-Earth, K2-18c, which turns out to be non-transiting, and therefore non-coplanar with K2-18b. As we saw yesterday, HARPS (High Accuracy Radial Velocity Planet Searcher), is capable of drilling down to about one meter per second in the analysis of the stellar wobbles that radial velocity methods examine. The current data set gives us another interesting world while reminding us of the capabilities...
First Light for ESPRESSO
What great news that ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations, has just achieved 'first light.' The spectrograph is installed on the European Southern Observatory's Very Large Telescope at the Paranal Observatory in northern Chile and its powers are prodigious. For ESPRESSO makes it possible, for the first time, to combine the light of all four telescopes at the VLT. This creates an instrument with the light collecting power of a 16-meter telescope, a major enhancement to the exoplanet hunt. Image: The room where the light beams coming from the four VLT Unit Telescopes are brought together and fed into fibres, which in turn deliver the light to the spectrograph itself in another room. One of the points where the light enters the room appears at the back of this picture. Credit: ESO/P. Horálek. Thus the enthusiasm of lead scientist Francesco Pepe (University of Geneva): ESPRESSO isn't just the evolution of our previous instruments...
Problems with Red Dwarf Habitable Zones
Why all the fuss about red dwarf planets? We're seeing so much ongoing work on these worlds because when it comes to terrestrial-class planets -- in size, at least -- those around red dwarfs are going to be our first targets for atmospheric characterization. A 'habitable zone' planet around a red dwarf throws a deep transit signature -- small star, big planet -- so that we can use transit spectroscopy to puzzle out atmospheric components. Getting an actual image would be even better, and modifications to the VISIR instrument at ESO's Very Large Telescope, a project Breakthrough Initiatives is involved in along with the ESO, could eventually yield such. We'll know a great deal more about the possibilities as new missions come online, but for now, researchers are doing their best to apply models to what we know and deduce what surface conditions may be like around stars like TRAPPIST-1 and Proxima Centauri. Some of these results are not auspicious if it's life we're looking for. I'm...
Ozone Problematic for Biosignature Detection
TRAPPIST-1 and its seven interesting planets may be the most compelling stellar system we're investigating, given the range of worlds here and the possibilities for analyzing an entire, nearby planetary system. But as we look toward examining systems like this with new space- and ground-based instruments, we may run into problems with searching for biosignatures. Both the TRAPPIST-1 planets and the promising Proxima Centauri b may be tough to characterize. The problem: When searching for biosignatures, we're looking for signs of metabolism, gases that are continually produced and remain out of balance in a planetary atmosphere. Ozone is one piece of the puzzle, one that signifies oxygen. Finding the latter in the same atmosphere with methane would be a compelling biosignature. But ozone could be hard to detect. Ludmila Carone (Max Planck Institute for Astronomy) and colleagues now find that atmospheric circulation in planets close enough to red dwarfs to be in their habitable zone...
Ross 128 b: A ‘Temperate’ Planet?
At 10.89 light years from Earth, Ross 128 is the twelfth closest star to the Solar System, a red dwarf (M4V) first cataloged in 1926 by astronomer Frank Elmore Ross. Now we have news that a team working with the European Southern Observatory's HARPS spectrograph (High Accuracy Radial velocity Planet Searcher) at the La Silla Observatory in Chile has discovered an Earth-sized planet orbiting Ross 128 every 9.9 days, a world whose orbit could conceivably place it in the habitable zone, where liquid water could exist on the surface. That gives us a second nearby world in an interesting orbit, the other of course being Proxima Centauri b. What gives the Ross 128 b detection a wrinkle of astrobiological interest is that the star the planet orbits is relatively inactive. Red dwarfs are known for the flares that can flood nearby planets with ultraviolet and X-ray radiation. Compounded with the fact that habitable zone planets must orbit quite close to a parent M-dwarf (given the star's...
Proxima Centauri Dust Indicates a Complicated System
Just how elaborate is the planetary system around the nearest star? It’s a question rendered more interesting this morning by the news that the ALMA Observatory in Chile has now detected dust in the system in an area one to four times as far from Proxima Centauri as the Earth is from the Sun. Moreover, there are signs of what may be an outer dust belt, an indication that while we have already discovered Proxima Centauri b, we are looking at a system in which cold particles and debris that could have formed other planets continue to accompany the star. Image: This artist’s impression shows how the newly discovered belts of dust around the closest star to the Solar System, Proxima Centauri, may look. ALMA observations revealed the glow coming from cold dust in a region between one to four times as far from Proxima Centauri as the Earth is from the Sun. The data also hint at the presence of an even cooler outer dust belt and indicate the presence of an elaborate planetary system. These...