CSIRO, the Commonwealth Scientific and Industrial Research Organisation in Australia, is announcing the detection of violent events around the pulsar PSR J0738-4042, some 37,000 light years from Earth in the constellation Puppis. This southern hemisphere constellation was originally part of a larger constellation called Argo Navis, depicting the ship made famous by the journey of Jason and the Argonauts. But Argo Navis was divided into three smaller constellations, leaving Puppis (The Stern) as something of a mythological fragment. Image: An artist's impression of an asteroid breaking up. Credit: NASA/JPL-Caltech. Whatever its origins, Puppis is also home, from our Earthly perspective, to a pulsar around which radiation and sleeting high energy particles are common. Ryan Shannon, a member of the CSIRO research team, has previously examined how an infalling asteroid from a violent disk around a pulsar might affect it, slowing the pulsar's spin rate and affecting the shape of the radio...
Extraterrestrial Dispersal Vectors
If human civilization is to extend itself beyond our planet, it will need to take with it the plants, animals and microorganisms that can sustain a living ecosystem. Nick Nielsen argues in this compelling essay that preserving our own species into the remote future thus means preserving terrestrial biology as well, drawing sustenance from it and maintaining it long enough for Earthly systems -- and ourselves -- to evolve in the myriad environments that await us among the stars. Mr. Nielsen's examination of future speciation continues his ongoing series on existential risk and the nature of human expansion. You can keep up with his thinking on his two blogs: Grand Strategy: The View from Oregon and Grand Strategy Annex, or follow him on Twitter, where he is @geopolicraticus. by J. N. Nielsen Some time ago on Twitter I wrote, "Astrobiology is island biogeography writ large." As in the classic science fiction film This Island Earth, we know our world to be an island oasis of life in the...
PLATO: Planet Hunter Selected by ESA
Following up on yesterday's post on Gaia, it seems a good time to discuss PLATO, the European Space Agency's planet hunting mission, which has just been selected for launch by ESA's Science Policy Committee. The agency's Cosmic Vision program has already selected the Euclid mission to study dark energy (launch in 2020) and Solar Orbiter, an interesting attempt to study the solar wind from less than fifty million kilometers. Solar Orbiter will surely return data we'll want to discuss here in terms of magsails, electric sails and other ways to harness a solar wind about which we have much to learn. Solar Orbiter's launch is the closest of the three, scheduled for 2017, with PLATO pegged for 2024, the launch to be from the European spaceport in Kourou (French Guiana) aboard a Soyuz booster. Note that date, because it's expected, as this BBC story notes, that the ground-based European Extremely Large Telescope (E-ELT) will be operational in Chile by 2024, a reminder that it should be...
Chemical Change in a Protoplanetary Disk
The young star known as L1527 offers a spectacular view at infrared wavelengths, a result of the configuration of gas and dust around it. Have a look at the image below, taken by the Spitzer Space Telescope, where light from the star escapes through the opening provided by a bipolar gas flow, illuminating the gas to highlight a nebula in the shape of a butterfly. Earlier radio studies of this star have shown that L1527 is surrounded by a gas disk that, from our perspective, is seen edge-on. Now new radio observations are helping us characterize the gas itself. Image: An infrared image of the protostar L1527 taken by the Spitzer Space Telescope. Credit: J. Tobin/NASA/JPL-Caltech. It's an interesting investigation because the chemical changes inside a disk as it forms are little understood. Intense observational effort has gone into studying the physical structure of protoplanetary disks, but separating the young disk and the infalling envelope of gas and dust that gives rise to it is...
Gaia: Early Views, Big Prospects
We have several months yet before the European Space Agency's Gaia mission enters its five-year operational phase. But you can see an important milestone in the image below. Gaia's two telescopes have to be aligned and focused as its other instruments are calibrated. Testing involves downloading data like this image of NGC1818, a young star cluster in the Large Magellanic Cloud. The image covers an area something less than one percent of the spacecraft's full field of view. Launched on December 19, 2013, Gaia now orbits around the L2 Lagrangian point some 1.5 million kilometers from Earth. Image: A calibration image from Gaia is part of early testing of the mission's systems. Credit: ESA/DPAC/Airbus DS. Gaia inevitably makes me think of Hipparcos, an earlier ESA mission launched in 1989 devoted to precision astrometry, the measurement of proper motions and parallaxes of stars to help us figure out their distance and tangential velocity. What a far cry Hipparcos was from the days when...
Asteroid Re-Direct: Finding a Candidate
It was just a year ago, on February 15, 2013, that the 30-meter asteroid 2012 DA14 whisked past the Earth at a distance of well less than 30,000 kilometers, inside the orbits of our geosynchronous satellites. If you don't recall 2012 DA14, it's probably because it was later on the same day that the Chelyabinsk impactor struck, a 20-meter asteroid that released the energy of approximately 460 kilotons of TNT. Chelyabinsk made it into 2014 Olympic news at Sochi, with ten gold medals for February 15 winners being embedded with fragments from the object. Today we get the passage of near-Earth asteroid 2000 EM26, whose closest approach will be covered by the Slooh network of automated telescopes starting at 2100 EST (0200 UTC), live from the Canary Islands. An iPad app is available or you can watch on Slooh.com, with the live image stream accompanied by commentary from astronomer Bob Berman and guests discussing the event and fielding questions from viewers using the hashtag #asteroid....
Starships on Earth
Building a starship takes us along an evolutionary path as we master the myriad methods of its creation. And the process does not start at some arbitrary point in the future. Rather, it begins now as we put today's technologies to work in the service of new concepts. Living 'meta-technologies' offer a way into the enclosed but verdant spaces of a worldship. In the essay below, Centauri Dreams regular Rachel Armstrong looks at current projects that explore the kind of biospheres a worldship will entail, and discusses enriched ecosystems that form 'a new kind of Nature.' Dr. Armstrong is co-director of AVATAR (Advanced Virtual and Technological Architectural Research) in Architecture & Synthetic Biology at the University of Greenwich, London. She completed clinical training at the John Radcliffe Medical School at Oxford in 1991, and in 2009 began PhD work in chemistry and architecture at University College London. by Rachel Armstrong "Why are you crying grandma?" "I'm not!" The old...
Mapping Ganymede
The first global geological map of Ganymede has become available through the efforts of a team led by Wes Patterson (Johns Hopkins Applied Physics Laboratory) and Geoffrey Collins (Wheaton College). The map doesn't reproduce well in the small space I have available, but the image below gives you an idea of its layout and is linked to the download site at the U.S. Geological Survey, which is publishing it as USGS Scientific Investigations Map 3237. Image: Ganymede is the largest satellite of Jupiter, and its icy surface has been formed through a variety of impact cratering, tectonic and possibly cryovolcanic processes. Images of Ganymede suitable for geologic mapping were collected during the flybys of Voyager 1 and Voyager 2 (1979), as well as during the Galileo mission in orbit around Jupiter (1995-2003). This map represents a synthesis of scientists' understanding of Ganymede geology after the Galileo mission. Credit: Wheaton College/JHUAPL/Brown University/JPL/USGS. Ganymede is...
SETI at the Particle Level
A big reason why the Fermi paradox has punch is the matter of time. Max Tegmark gets into this in his excellent new book Our Mathematical Universe: My Quest for the Ultimate Nature of Reality (Knopf, 2014), where he runs through what many thinkers on the subject have noted: Our Sun is young enough that countless stars and the planets that orbit them must have offered homes for life long before we ever appeared. With at least a several billion year head start, wouldn't intelligent life have had time to spread, and shouldn't its existence be perfectly obvious by now? Tegmark's book is fascinating, and if you're interested in learning why this dazzling theorist thinks it likely we are the only intelligent life not just in our galaxy but in our universe, I commend it to you (although Fermi issues play only the tiniest of roles in its overall themes). I'll have plenty of occasion to get into Tegmark's ideas about what he believes to be not just a multiverse but a multiply-staged...
Unusually Red Brown Dwarfs (and What They Tell Us)
As we continue to learn more about brown dwarf atmospheres, the dwarf ULAS J222711-004547 catches the eye because of its unusually red appearance. What Frederico Marocco (University of Hertfordshire) and team have learned through observations with the Very Large Telescope in Chile is that a thick layer of clouds in the upper atmosphere is responsible for its tint. Marocco’s data analysis tells us we are seeing clouds made up of mineral dust. In this UH news release, he specifically mentions enstatite and corundum. The clouds are floating in a hot atmosphere of water vapor, methane and possible ammonia. This brown dwarf may turn out to be uncommonly helpful. Thus Avril Day-Jones, a colleague of Marocco’s at the University of Hertfordshire, who contributed to the analysis: "Being one of the reddest brown dwarfs ever observed, ULAS J222711-004547 makes an ideal target for multiple observations to understand how the weather is in such an extreme atmosphere. By studying the composition...
Kepler-413b: Wobbles of a Circumbinary World
It was always a good bet that we'd get plenty of surprises as data from Kepler began to come in, but the odd world known as Kepler-413b really does stand out. The transit method seems made to order for a certain regularity -- Kepler looks at how the light from a given star dims when a planet passes in front of it as seen from Earth. Slight changes in these transits can help us detect other worlds in the system or, perhaps, help us make future discoveries of exomoons. But what happens when the transit is so erratic that both these scenarios can be ruled out? Veselin Kostov and team have exactly that situation on their hands. According to Kostov (Space Telescope Science Institute and Johns Hopkins University), the data for Kepler-413b show, over a period of 1500 days, three transits in the first 180 days, followed by 800 days with no transits at all. Following that, the researchers noted five more transits in a row. And according to their analysis, the next transit is not going to...
Glimpsing Heat from Alien Technologies
An assistant professor of astronomy and astrophysics at Penn State, Jason Wright is well known to the Centauri Dreams community because of his continuing work on the search for extraterrestrial intelligence through detection of its waste heat rather than directed communication. The discipline widely known as Dysonian SETI is receiving more and more attention, and given Dr. Wright’s prominence in the field, I was delighted to receive the essay below, which offers background on the subject at large and an overview of his current project. Dr. Wright is a member of the Center for Exoplanets and Habitable Worlds and the Penn State Astrobiology Research Center (part of the NASA Astrobiology Institute), as well as being a member of the California Planet Survey consortium. His AstroWright blog is essential reading for anyone interested in SETI and the process of science at work. He also maintains the Exoplanet Orbit Database and Exoplanet Data Explorer at exoplanets.org. by Jason T. Wright...
Thoughts on Planetary Migration
Learning that liquid water may exist beneath the surface of more than a few Solar System objects naturally raises astrobiological questions. But as Caleb Scharf notes in Water Erupts Across the Solar System, a much larger issue is whether the kind of chemoautotrophic microbes we find on Earth (Scharf calls them 'rock eaters') could have evolved there in the first place. Habitats that may support an Earth microbe aren't necessarily capable of originating their own forms of life, although the question is obviously going to propel much future study. What strikes me about a number of recent stories in these pages is how much what we see in our own and other solar systems may be the result of planetary migration, which can affect those water-bearing objects. Ceres is a case in point, and it was my reason for bringing up Caleb Scharf's always interesting blog in the first place. In Scharf's post, he takes note of the fact that Ceres is a bit too close to the Sun for comfort given its...
Alpha Centauri: Dust and Its Significance
When I was growing up, Alpha Centauri was utterly dismissed as a possible location for planets. A binary system couldn't possibly produce them, I read, and it was assumed that planets could only be found around single stars like our own Sun. How times have changed. Now we know of plenty of multiple star systems with planets -- the number is over ten percent of all known exoplanets -- and while many of these are widely spaced, we've nonetheless found a few in tight circumstances indeed. HD196885 (Gamma Cephei) is an example, where the separation between the two stars is on the order of 20 AU, much like Centauri A and B. How planets form around such stars is an interesting issue because, as a new paper considering dust in the Alpha Centauri system explains, the standard core-accretion model runs into problems with environments as perturbed as these. We can see the results in existing observations: Radial velocity methods detect no planets more massive than 2.5 Jupiter masses inside 4...
Habitability Around Ancient Stars
I see a lot to like about Abraham Loeb’s new paper “The Habitable Epoch of the Early Universe,” available as a preprint and now going through the submission process at Astrobiology. Not that it isn’t controversial, and for reasons that are patently obvious as soon as one digs into it. But the sheer chutzpah of postulating that microbial life might have started up no more than ten or fifteen million years after the Big Bang takes the breath away. This is a notion that extends life so far back that it defies our conventional models of how it formed. Temperatures aren’t the problem, given that radiation in the early universe would have produced cozy conditions for a multi-million year window of time as what is now called the cosmic microwave background (CMB) continued to cool. The problem is that we have to get from hydrogen and the helium created by fusion in the Big Bang furnace to heavy elements that are usually explained by large stars seeding the cosmos with supernovae explosions....
Starships: Sentient Habitats
Librarian and futurist Heath Rezabek has become a familiar figure on Centauri Dreams through his writings on existential risk and how our species might counter it through Vessels, installations conveying our planet's biological and cultural identity. The Vessel concept is far-reaching, and if we build it on Earth, we would likely take it to the stars. But in what form, and with what purpose? Enter the lightsail starship mission Saudade 4, its crew -- some of whom are humans by choice -- nourished on the dreams of a continually growing archive. Heath's chosen medium, the essay form morphing into fiction, conjures the journey star travelers may one day experience. by Heath Rezabek I've described The Vessel Project in four prior posts: August 29, 2013 - Deep Time: The Nature of Existential Risk October 3, 2013 - Visualizing Vessel November 7, 2013 - Towards a Vessel Pattern Language December 13, 2013 - Vessel: A Science Fiction Prototype As I began preparing my paper on the Vessel...
Shaking Up a ‘Snow Globe’ Solar System
The same issue of Nature that carried Ian Crossfield's weather map of Luhman 16B, published yesterday, also featured a paper from Francesca DeMeo on planetary systems in chaos. Specifically, DeMeo (a Hubble postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics), looks at main belt asteroids in terms of their composition and history. Her findings reveal an early system nothing like the relatively sedate situation we see today, with small, rocky worlds near to the Sun and gas giants on much more distant orbits. Indeed, the migration of giant planets produced what DeMeo likens to "flakes in a snow globe" as asteroids were disrupted and interplanetary debris was thrown into new trajectories. The dynamical processes thus unleashed may have played a huge role in Earth's development. Working with data from the Sloan Digital Sky Survey, DeMeo teamed with Benoit Carry (Paris Observatory) to chart more than 100,000 asteroids throughout the Solar System, finding that especially...
Focus on the Nearest Brown Dwarfs
Luhman 16AB (otherwise known as WISE J104915.57-531906) holds out quite an allure for those of us hoping to see future exploratory missions to nearby interstellar space. As recounted here in December (see Possible Planet in Nearby Brown Dwarf System), the European Southern Observatory's Henri Boffin has found that this brown dwarf pair is likely home to a previously undetected companion. Bear in mind that we know of no closer brown dwarf; indeed, Luhman 16AB is no more than 6.6 light years out, making it the third closest system to our Sun after Barnard's Star and, of course, Alpha Centauri. We know very little about this putative companion other than Boffin's estimate that its likely mass is between a few Jupiter masses and perhaps as many as 30, but the good news is that the high end of this mass range should offer us an object that can be detected by adaptive optics, given the size of the apparent separation. In any case, radial velocity methods should work nicely here as well,...
An Intergalactic River of Hydrogen?
NGC 6946, the so-called 'Fireworks Galaxy,' has caught the eye of many an astronomer, even if its position -- close to the plane of the Milky Way and thus partially obscured by gas and dust -- makes the observation difficult. At 22 million light years from Earth, this face-on spiral galaxy has been the site of eight supernovae in the past century. I'm thinking about supernovae because SN 2014J, a supernova a scant 12 million light years away in M82, has been much in the news in recent days. But NGC 6946 is also intriguing because of the active pace of star formation there. What sustains a galaxy like this and keeps its star formation robust? Image: The spiral galaxy NGC 6946. Observations from the Chandra spacecraft have revealed three of the oldest supernovas ever detected in X-rays here. This composite image also includes optical data from the Gemini Observatory in red, yellow, and cyan. Credit: X-ray: NASA/CXC/MSSL/R.Soria et al, Optical: AURA/Gemini OBs. Now D. J. Pisano (West...
What Makes a Planet ‘Superhabitable’?
Friday's look at habitable zones, and the possibilities of life below the surface or in the atmosphere of an exoplanet, segues naturally into the fascinating notion of 'superhabitable' worlds. René Heller (McMaster University) and John Armstrong (Weber State University) ponder the possibilities in a recent paper for Astrobiology. What if, the scientists ask, our notions of habitability are too closely crafted to our own anthropocentric viewpoint? Could there be planets that are actually more habitable than the Earth? Should the Earth itself be considered, with respect to a broader view of biology, only marginally habitable? The question has important ramifications for how we approach the search for other habitable worlds. We study extremophilic life forms on Earth and question whether conditions even more bizarre than these could still produce life. But Heller and Armstrong reframe the issue: The word 'bizarre' is here to be understood from an anthropocentric point of view....