Exoplanet Possibilities in 12 Protoplanetary Disks

Almost all the exoplanets we know have been detected in evolved stellar systems, places where the protoplanetary disk has dissipated and the planets around the star can be observed. Seeing inside a disk in formation is tricky business, though prominent studies at stars like Beta Pictoris have told us much about the evolution of these disks as planets do begin to emerge. But just how common are disks with ring and gap structures? Do all such disks produce planets? We're beginning to learn more as instruments like the Atacama Large Millimeter Array (ALMA) continue to be used to examine infant systems. Many of these show disks that are uniform in appearance, lacking discernible features like rings or gaps. Others are brighter, marked by concentric rings with separations that imply planet formation. It’s natural enough that early efforts have been devoted to brighter disks with their suggestion of planetary activity. Image: Until recently, protoplanetary disks were believed to be smooth,...

read more

Helium Detection at HAT-P-11b

You would think that helium, being the second most common element in the universe, would have been detected in exoplanet atmospheres long ago. A major constituent of the atmosphere at both Jupiter and Saturn, helium seems a natural because planets form from dust and gas from previous stellar generations, but it turns out that the first helium detection on an exoplanet occurred only this year, in a study led by Jessica Spake (University of Exeter). The planet in question, WASP-107b, yielded its helium signature in data gathered by the Hubble Space Telescope, a detection that showed clear signs of a comet-like tail forming as the planet's atmosphere escaped. Note the space-based detection: It's significant because Earth's atmosphere is opaque to the ultraviolet light the atoms in such an eroding atmosphere absorb. Could we make this kind of fine-grained study from the surface of the Earth? It turns out there's a way: Helium in its long-lived metastable state (as compared to its ground...

read more

A Quick Riff on New Horizons

We're starting to get a better view of Ultima Thule, the next destination for the New Horizons spacecraft, which is due to make its flyby of the Kuiper Belt Object also known as 2014 MU69 on New Year's Eve (0533 UTC January 1) The images below can't help but recall the gradual approach to Pluto/Charon as New Horizons closed on what turned out to be a spectacularly successful encounter. Here's hoping Ultima Thule is just as productive in teaching us something about Kuiper Belt Objects in general. Here's hoping, too, for another KBO flyby down the road. What we see in the dual images is the view (at the left) through LORRI (Long Range Reconnaissance Imager), averaging 10 individual 30-second exposures, with Ultima Thule just barely visible in the yellow circle. The component exposures were taken about a day before a course correction maneuver on December 2 and show Ultima visible against background stars. At the right is the image re-processed to remove the background starfield....

read more

OSIRIS-REx: Arrival

December 3 goes down as the day when OSIRIS-REx arrived at the asteroid called Bennu. The spacecraft, whose acronym untangles as Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, has been performing braking maneuvers to slow for the approach since October. This has been a long and delicate operation, with arrival marked by a maneuver on Monday to set up the first flyover of the object's north pole. Even so, spacecraft and asteroid are flying together while not yet in an orbital relationship. That won't happen until December 31, when the mission's navigation team will use the preliminary survey they're building now to initiate the orbit. Bear in mind that we are dealing with an object less than 500 meters across (about 1,600 feet), so one of Bennu's distinctions will be that it is to become the smallest object ever orbited by a spacecraft. Now the learning period intensifies. "During our approach toward Bennu, we have taken observations at much...

read more

Slowing Star Formation: A Key to Astrobiology?

The rate of star formation in our galaxy is about two new stars per year, a sedate pace that may play its role in the emergence of life. A new study out of Australian National University looks at the factors that can slow star formation, particularly in galaxies and star clusters still young enough to contain large amounts of dusty gas. What ANU's Roland Crocker and colleagues want to determine is an upper limit on how quickly stars can form in any giant gas cloud. It's an issue because conditions inside a tightly bound cluster could be inimical to life. Consider RMC 136, a concentration of stars at the heart of the Tarantula Nebula in the Large Magellanic Cloud. Here we have a cluster with an estimated mass of 450,000 solar masses, with a central concentration about 2 parsecs across. Star formation in this tightly crowded part of the cluster NGC 2070 is intense, but the tight quarters might turn out to be a serious issue. "If star formation happened rapidly, all stars would be bound...

read more

Super-Earths, Magnetic Fields and Astrobiology

We'd like to know a lot more than we do about how planets create magnetic fields. After all, a major motivation for exoplanet research (though hardly the only one) is to find out whether there is other life in the universe. A magnetic field can protect planetary atmospheres from the effects of the host star's stellar wind, a stream of charged particles that could disrupt life's formation. Planets in close orbits of a central star are going to be particularly vulnerable. But if protecting a planetary surface as well as keeping its atmosphere intact are powerful factors in understanding its evolution, learning more about planetary magnetic fields isn't going to be easy. Consider a new paper from François Soubiran (École Normale Supérieure, Lyon) and Burkhard Militzer (UC-Berkeley). They're digging into the question of magnetic fields on super-Earths, in this case planets up to three times the mass of our own world. The scientists believe that magnetic fields could emerge here,...

read more

Beyond TESS: Looking Toward CHEOPS

As the exoplanet hunt deepens, we're seeing how research efforts build upon each other, and how the findings of one investigation play into the planning for another. Kepler candidate planets, for example, have been confirmed using ground-based telescopes in radial velocity investigations, giving an independent check that the putative world is really there. TESS (Transiting Exoplanet Survey Satellite) will find planets that refine the target list for the James Webb Space Telescope, with extremely large telescope technology already in the wings. What we sometimes forget is that this collaborative effort has already built up a healthy momentum. Having maxed out Kepler (and K2 was an outstanding rehabilitation of a damaged spacecraft), the operations of TESS will focus on bright, nearby stars. The momentum of TESS and its contributions to the upcoming JWST should remind us that we then have the European Space Agency's CHEOPS (CHaracterising ExOPlanet Satellite) mission queuing up for...

read more

CubeSats Deliver at Mars

I never saw the 2008 film WALL·E, which was all the rage not long after its release. A computer animated science fiction movie, WALL·E won a slew of awards including a Golden Globe for best animated feature, a Nebula for best script, and an Academy Award, as well as making Time's list of best movies of the decade. Bringing it to mind this morning, though, is the recent success of the InSight mission at landing on Mars, and the support technologies that flew with it. Thus the image below, which in its own way is iconic. It's from a craft nicknamed WALL·E after the star of the film, a CubeSat no larger than a briefcase that flew all the way to Mars in a seven month journey that demonstrated what miniaturized technologies can do. WALL·E is formally known as MARCO-B, the partner to MARCO-A (nicknamed EVE, another star of the film). Both these craft proved successful at their mission, which was to offer Earthside engineers the opportunity to monitor the InSight landing in ways that hadn't...

read more

Modeling Climates at TRAPPIST-1

It's a long name, but with the successful arrival of the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander on Mars, we now go to work on the planet's deep interior. With Centauri Dreams' deep space perspective, my thoughts quickly turn to other stellar systems. We've all seen how hard it is to land on Mars, and have looked up into the night sky to find the ruddy pinprick that marks its naked eye presence. Given our Solar System's scale, the task of getting humans to Mars looms as a major challenge. Image: Who can resist the first clear photo from a Mars mission? Not me. Credit: NASA. But suppose we were on a planet in the TRAPPIST-1 system. Here we have roughly Earth-sized planets packed into tight proximity around the parent red dwarf. TRAPPIST-1b is at 0.011 AU, while TRAPPIST-1c is at 0.015 AU. Even the most distant from the star, TRAPPIST-1h, orbits at 0.062 AU, so that these seven worlds are all closer to the host than Mercury in our...

read more

HR 8799c: Water Detection Moves Spectroscopy Forward

Some relatives of a friend recently made me realize how routine exoplanet discoveries have become to the public. These are anything but astronomy buffs, but they know that planets can be found without ever being seen. My acquaintances may not understand radial velocity or transits to any high degree, but they accept that the methods are there and have proven reliable. "Someday," said one, "I guess we'll actually see one of these planets." The image below came as a surprise when I showed it to them. Here we do see a planetary system, four actual planets around the star HR 8799 and not just jiggles in Doppler signals or dips in a lightcurve. For me, what's astonishing here is not only that we can see planets despite their proximity to the host, but that we've accomplished this with telescopes on the ground. Adaptive optics -- correcting for turbulence in the atmosphere that would distort an astronomical image, using a guide star as a reference -- is the tool that is opening a new era...

read more

An Encouraging Formation Scenario for Icy Moons

It makes sense that planets in other stellar systems would have moons, but so far it has been difficult to find them. That's why Kepler-1625b, about 8,000 light years out in the direction of Cygnus, is so interesting. As we noted last month, David Kipping and graduate student Alex Teachey have compiled interesting evidence of a moon around this gas giant, which is itself either close to or within the habitable zone of its star. The massive candidate exomoon is the size of Neptune, and if confirmed, would mark the first exomoon detection in our catalog. As the examination of Kepler-1625b and its transit timing variations continues, we have new work out of the University of Zürich, ETH Zürich and NCCR PlanetS that adds weight to the assumption that moons around large planets should be ubiquitous. Using computer simulations run at the Swiss National Supercomputing Centre (CSCS) in Lugano, a team of researchers led by Judit Szulágyi (University of Zurich and ETH Zurich) has determined...

read more

Puzzling Out Chariklo’s Rings

The outer system object called Chariklo doesn't get into the news all that much, so I'm glad that this morning I have the chance to give it its place in the Sun. 10199 Chariklo is a Centaur, moving between the orbits of Saturn and Uranus. With an estimated diameter of 250 kilometers, it's the largest Centaur known, and as far as I know, the first one known to have a ring system. Another Centaur, Chiron, is also suspected of having rings, but on the latter, researchers have not ruled out other explanations for the observed feature, like symmetrical jets of gas and dust. With Chariklo, we have data from a 2013 occultation of a distant star that revealed the existence of two rings, one 3 kilometers and the other about 7 kilometers wide, separated by about 9 kilometers. Chariklo's rings have even been given nicknames -- Olapoque for the larger, Chui for the smaller, both the names of Brazilian rivers, though the IAU will have the final say on such matters. Of particular interest since...

read more

AAVSO Exoplanet Archive for Amateur Astronomers

Even today, I can well understand the reaction that Dennis Conti had when confronted with the prospect of finding a planet around another star with nothing more than an amateur instrument. Conti, who founded and now chairs the Exoplanet Section of the American Association of Variable Star Observers, was a newcomer to the transit method just a few years ago. "I thought, there's no way for someone with a backyard telescope to detect a planet going around a distant star," he says, looking back from the vantage of one now immersed in such observations. My boyhood 3-inch reflector was not a backyard instrument -- too many trees back there. So it became a front-yard telescope. Absent the technological innovations of the past five decades, I could only imagine vast instruments for studying objects around other stars. The transit method in exoplanet detection was a long way off, but the idea of seeing not a planet itself but a change in starlight as the planet crossed the face of its host...

read more

Crater Beneath the Greenland Ice

A crater roughly the size of the area inside Washington DC's beltway has been found beneath the Greenland ice. On this, some thoughts, but first, a reminiscence. If you've ever driven the Capital Beltway at rush hour, you'll have some sense of the crater's size. My own experiences of it have been few, but the most memorable was the afternoon I spent at NASA Goddard Space Flight Center, where Greg Benford was speaking. We had agreed that after his talk, Greg and I would head out for dinner at a local restaurant, the exact venue to be determined later. It was about 5:00 PM when we were in the GSFC parking lot ready to go, now joined by Gloria Lubkin, editor emerita at Physics Today. With the help of Greg's nephew Dominic, we had chosen a French restaurant about 10 miles away. The problem: Greg and Gloria were in one car, I was in another, and it was rush hour. An out-of-towner who rarely got to DC, I was not remotely prepared for the beltway under these conditions. I had no smartphone...

read more

Spitzer Size Constraints on ‘Oumuamua

The first interstellar object detected in our own Solar System, 'Oumuamua has a pleasing name, translating from the Hawaiian as something like 'far visitor first to arrive,' or words to that effect. It's also proven a frustrating catch ever since detected by the University of Hawaii's Pan-STARRS 1 telescope on Haleakala, Hawaii during a search for near-Earth asteroids. We've put telescope resources on Earth and in space on the object, but our observing time is up. For 'Oumuamua is now well on its way out of the Solar System, so we're left to massage the data we have in hopes of gaining new insights. Davide Farnocchia (Center for Near Earth Object Studies, JPL) encapsulates the issue: "Usually, if we get a measurement from a comet that's kind of weird, we go back and measure it again until we understand what we're seeing. But this one is gone forever; we probably know as much about it as we're ever going to know." Thus Avi Loeb's recent paper with Shmuel Bialy discussing the object's...

read more

A Super-Earth Orbiting Barnard’s Star

The detection of a planet around Barnard’s Star really hits home for me. No, this isn’t a habitable world, but the whole topic of planets around this star has resonance for those of us who remember the earliest days of exoplanet study, which could be extended back to Peter van de Kamp’s work at Swarthmore’s Sproul Observatory in Pennsylvania. The astronomer thought he had found evidence for a 1.6 Jupiter mass planet in a 4.4 AU orbit there, based on what he interpreted as telltale wobbles in photographic plates of the star taken between 1916 and 1962. This work, ending in the early 1970s, turned out to be the result of errors in the instrument van de Kamp was using, but the buzz about possible planets around Barnard’s Star had been sufficient to create a small crest of enthusiasm for exoplanet studies in general. The British Interplanetary Society saw in Barnard’s Star a target worth investigating, and designed their Daedalus star probe around a mission there. In any case, van de...

read more

Low Metallicity in Compact Multi-Planet Systems

When astronomers talk about metals, they're using the term in a specific sense. A metal in stellar terms is any element heavier than helium. Thus iron, silicon, magnesium and carbon qualify, all elements that are components of small, rocky planets. It was iron that John Michael Brewer (Yale University), Debra Fischer and colleagues singled out as a proxy in their recent work on the metal content of exoplanet systems. The work focuses specifically on compact, multi-planet systems as one of several system architectures found in close orbit of a host star. What's interesting here is that these domains seem mutually exclusive, or almost so. Unlike our Solar System, a system with multiple planets on tight orbits can squeeze its worlds into a region as close as Mercury. Likewise near the host star, we sometimes find massive planets in close orbits, known as 'hot Jupiters.' Few of these have close planetary neighbors, and few compact multi-planet systems have massive planets. And there is...

read more

Lucy in the Sky

Extended operations at multiple targets, as Dawn showed us, are possible with ion propulsion. But we still learn much from flybys, something New Horizons reminded us with its spectacular success at Pluto/Charon, and again reminds us as it closes on MU69. Likewise, a mission called Lucy will visit multiple objects, using traditional chemical propulsion with gravity assist to achieve flybys of seven different targets. The destination: Jupiter's trojan asteroids. With launch scheduled for 2021, Lucy's will study six Jupiter trojans and one asteroid in the Main Belt. Image: Jupiter's extensive trojan asteroids, divided into 'Trojans' and 'Greeks' in a nod to Homer, but all trojans nonetheless. Credit: "InnerSolarSystem-en" by Mdf at English Wikipedia - Transferred from en.wikipedia to Commons. Licensed under Public Domain via Commons. The trojans are interesting bodies orbiting at the L4 and L5 Lagrange points 60° ahead and behind the gas giant. Jupiter's trojans are the best known...

read more

Parker Solar Probe: Already a Record Setter

Over the sound system in the grocery store yesterday, a local radio station was recapping events of the day as I shopped. The newsreader came to an item about the Parker Solar Probe, then misread the text and came out with "The probe skimmed just 15 miles from the Sun's surface." Yipes! I was in the vegetable section but you could hear him all over the store, so I glanced around to see how people had reacted. Nobody as much as raised an eyebrow, which either says people tune out background noise as they shop or they have little knowledge of our star. The correct number is 15 million miles (24,1 million kilometers), and it's still a hugely impressive feat, but I hope the station got the story right later on. I go easy on this kind of thing because it's easy enough to make a mistake when reading radio copy (I've done this myself). Anyway, there is always some listener who calls it in, which I should have but didn't. I was pushed for time that morning, making choices about squash and...

read more

Fine-Tuning Mechanisms for Water Delivery

We’ve long been interested in how the Earth got its oceans, with possible purveyors being comets and asteroids. The idea trades on the numerous impacts that occurred particularly during the Late Heavy Bombardment some 4.1 to 3.8 billion years ago. Tuning up our understanding of water delivery is important not only for our view of our planet’s development but for its implications in exoplanet systems with a variety of different initial conditions. Image: This view of Earth’s horizon was taken by an Expedition 7 crewmember onboard the International Space Station, using a wide-angle lens while the Station was over the Pacific Ocean. Credit: NASA. But the picture becomes more complex when we compare regular hydrogen atoms (one proton, one electron) with ‘heavy hydrogen,’ or deuterium atoms. The latter have a neutron in addition to a proton in the nucleus. A recent paper in the Journal of Geophysical Research digs into isotope ratios, the ratio of deuterium to ordinary hydrogen atoms,...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives