Amateur Astronomers Join Hunt for Exoplanets

An Australian amateur astronomer named Thiam-Guan Tan has made a name for himself in the realm of exoplanets. Tan participated in the discovery of an exoplanet that may orbit within its star's habitable zone. LHS 1140 b is a super-Earth some 41 light years from Earth that orbits a red dwarf star. Back in September of 2016, with a number of professional observatories looking at the host star, Tan provided key data to help verify the existence of LHS 1140b. "It was fortunate that I was able to catch a transit," said Tan, a retired engineer with a 12-inch telescope who has also discovered several supernovae. He is quoted in a newspaper called The West Australian as saying "That night, the Centre for Astrophysics had lined up five other telescopes across Australia and Hawaii to observe but they were all clouded out." Tan's work with exoplanet transits continues, an illustration of the role that talented amateurs with affordable equipment (Tan's telescope cost $15,000) can play. Image:...

read more

A White Dwarf’s Giant Planet

Calling it a ‘chance discovery,’ the University of Warwick’s Boris Gänsicke recently presented the results of his team’s study of some 7,000 white dwarf stars, all of them cataloged by the Sloan Digital Sky Survey. One drew particular interest because chemical elements turned up in spectroscopic studies indicating something unusual. Says Gänsicke, “We knew that there had to be something exceptional going on in this system, and speculated that it may be related to some type of planetary remnant.” And that makes the star WDJ0914+1914 an example of what a stellar system that survived, at least partially, the red giant phase of its host star might look like as a planet orbits the Earth-sized white dwarf. This work, which draws on data from the European Southern Observatory’s X-shooter spectrograph at the Very Large Telescope in Chile, confirms hydrogen, oxygen and sulphur associated with the white dwarf, all found in a disk of gas around the star rather than being present in the white...

read more

A Closer Look at an Interstellar Comet

The interest in 'Oumuamua and comet 2I/Borisov makes it clear that interstellar neighbors wandering into our system generate loads of media coverage. And why not: Here is a way to study material from another stellar system while remaining within our own. 2I/Borisov, for example, reaches its closest approach to Earth in early December, closing to within roughly 300 million kilometers. Whatever pushed an object like this out of the parent system cannot be known, but we're likely dealing with gravitational disruption related to planets in the birth system. But more about that in a moment. For thanks to Yale University astronomers Pieter van Dokkum, Cheng-Han Hsieh, Shany Danieli, and Gregory Laughlin, we have a fine new image of 2I/Borisov. This was taken on November 24 using the W.M. Keck Observatory's Low-Resolution Imaging Spectrometer in Hawaii. The tail of the comet, according to van Dokkum, is about 160,000 kilometers long. Note the size comparison below to be reminded, as always,...

read more

Axial Tilt, Habitability, and Centauri B

Our fascination with Alpha Centauri doubtless propels at least some of the recent interest in binary star systems, as we ponder the chances for habitable worlds around the nearest stars. But given that the population of binary or multiple star systems in our galaxy is as high as it is (multiple systems are common, and about 50 percent of stars have binary companions), determining the factors that influence habitability in this environment has much broader significance. A new study out of the Georgia Institute of Technology has been looking at the issue by modeling an Earth twin in various binary scenarios. So how does Alpha Centauri fare? We can find habitable zones in the Centauri A/B system, and into these the researchers introduced a simulated Earth around Centauri B to examine its axis dynamics. They also investigate the dynamical evolution of planets within the habitable zone of either star, generalizing from these results to the larger binary star population. The issue to be...

read more

Surveying Multiple-Star Exoplanetary Systems

While the majority of exoplanet-hosting stars discovered so far are single, we do have multiple star systems in various configurations with planetary companions. This is fertile ground for study, and not just because the nearest stellar system, Alpha Centauri, contains a tight binary pair that is being closely investigated for planets. The third star here is, of course, Proxima Centauri, around which we already know of the existence of a planet in the habitable zone. The much broader question is, how likely are multiple star systems to host planets? Tackling this question in a new study is Markus Mugrauer (Friedrich Schiller University, Jena), who has been investigating how the existence of multiple stars in a system affects the formation and development of planets. Mugrauer has been working with the second data release from the European Space Agency’s Gaia mission (made available in April of last year). This release contains data collected by Gaia during the first 22 months of its...

read more

Red Dwarf Planets and Habitability

The question of habitability on planets around M-dwarfs is compelling, and has been a preoccupation of mine ever since I began working on Centauri Dreams. After all, these dim red stars make up perhaps 75 percent of the stars in the galaxy (percentages vary, but the preponderance of M-dwarfs is clear). The problems of tidal lock, keeping one side of a planet always facing its star, and the potentially extreme radiation environment around young, flaring M-dwarfs have fueled an active debate about whether life could ever emerge here. At Northwestern University, a team led by Howard Chen, in collaboration with researchers at the University of Colorado Boulder, NASA's Virtual Planet Laboratory and the Massachusetts Institute of Technology, is tackling the problem by combining 3D climate modeling with atmospheric chemistry. The paper on this work, in press at the Astrophysical Journal, examines how general circulation models (GCM) have been able to simulate the large-scale circulation and...

read more

ARIEL Emerging

It's good to see the European Space Agency's ARIEL mission getting a bit more attention in the media. The Atmospheric Remote-sensing Infrared Exoplanet Large-survey was selected earlier this year as an ESA science mission, scheduled for launch in 2028. Here the goal is to cull a statistically large sample of exoplanets to examine their evolution in the context of their parent stars. Giovanna Tinetti (University College London) is principal investigator. I would urge seeing ARIEL in the context of a different kind of evolution, that being the gradual growth in our technologies as we continue getting closer to studying the atmospheres of terrestrial-class worlds. For while ARIEL cannot achieve this feat -- its focus is on exoplanets of Jupiter-mass down to super-Earths, all on close orbits, with temperatures greater than 320 Celsius -- it leverages the fact that high temperature atmospheres keep their various interesting molecules in continual circulation, rather than letting them sink...

read more

Gas Giants on Eccentric Orbits: ‘Wrecking Balls’ for the Inner System?

We often think of Jupiter as a mitigating influence on asteroid or comet strikes in the inner system, its gravity changing the trajectories of potential impactors. That would make gas giants a powerful determinant of the survivability of Earth analogues, at least in terms of habitability. While we continue to investigate the question, it's interesting to consider the damage a gas giant on an elliptical orbit might do to habitable zone planets. Stephen Kane (UC-Riverside), working with Caltech astronomer Sarah Blunt, decided to find out what would happen if, in their modeling, they introduced an elliptical gas giant into the system of an Earth twin. You may remember Kane's work earlier this year combining radial velocity with direct imaging methods to find three gas giants that had been previously unobserved (citation below). The monitoring of ten target stars continues even as this new work is published. We're beginning to find more planets at ever larger distances from their stars...

read more

Benefits of a ‘Snow Line’ Neptune

The formation of planets like Neptune under the core accretion model involves a protoplanetary core that reaches around 10 Earth masses before beginning to pull in surrounding gas, the latter being a runaway process that quickly builds the atmosphere around the object. Core accretion is most efficient at doing this just outside the snow line, but if we want to understand and test the theory, we need to know a lot more about how planets are distributed in this region. And that’s a problem, because recent microlensing surveys have found that planets like Neptune are most abundant much more distant from their host stars. Outward migration can account for such worlds, but we know little about exoplanets that form at the snow line, which is where the condensation of ices can factor into the emergence of a new world. Is this just an artifact of our still evolving microlensing detection techniques? Perhaps, and exceptions to the rule can therefore be helpful. Recent work that began with a...

read more

Exoplanet Collision at BD +20 307?

NASA collaborates with the German Aerospace Center (DLR) on one of our more interesting observatories. SOFIA, the Stratospheric Observatory for Infrared Astronomy, is a Boeing 747 aircraft that flies an infrared telescope with a 2.7 m diameter mirror. Located on the port side of the fuselage near the tail, the telescope houses a number of instruments for infrared astronomy at wavelengths from 1-655 micrometers (μm). One of these is FORCAST (Faint Object Infrared Camera for the SOFIA Telescope), which has now spotted an intriguing phenomenon, one that may be flagging a collision of two exoplanets. The stars in question form a double system called BD +20 307, some 300 light years from Earth. Note the age of this system, about one billion years, an important consideration in what follows. About ten years ago, observations from the Spitzer instrument as well as ground observatories produced evidence of warm debris here, whereas from age alone, we would have expected warm circumstellar...

read more

Exoplanet Geochemistry: The White Dwarf Factor

I continue to be fascinated by small stars. My earliest passion for such involved red dwarfs, which appeared to make habitable planet possibilities that would be of great interest to science fiction authors, assuming such environments could survive tidal lock and stellar flaring. But white dwarfs have a weird seductiveness of their own, because we're learning how to extract from them information about planets that orbited them before being consumed. Thus a new paper out of UCLA, which focuses on an unusual way of determining the geochemistry of rocks from beyond our Solar System. We can do this because white dwarfs, the remnants of normal stars that have gone through their red giant phase and collapsed into objects about the size of the Earth, have strong gravitational pull. That means we would expect heavy elements like carbon, oxygen and nitrogen to vanish into their interiors, utterly out of view to our instruments. We should see little more than hydrogen and helium, making what...

read more

Alan Boss: The Gas Giants We Have Yet to Find

The news of a gas giant of half Jupiter's mass around a small red dwarf, GJ 3512 b, continues to resonate. It goes to what has become a well enshrined controversy among those who follow planet formation models. While core accretion is widely accepted as a way of building planets, gravitational instability has remained an option. We are not talking about replacing one model with another, but rather saying that there may be various roads to planet formation among the gas giants. In any case, GJ 3512 b makes a strong case that we have much to learn. When I think about gravitational instability, I go back to the work of Alan Boss (Carnegie Institution for Science), as he has long investigated the concept. I learned about it from his papers and his subsequent book The Crowded Universe (Basic Books, 2009). Here's how Boss describes it there: Proponents of the top-down mechanism… envision clumps of gas and dust forming directly out of the planet-forming disk as a result of the...

read more

An Unusual Gas Giant in a Red Dwarf System

The gas giant GJ 3512 b does not particularly stand out at first glance. About 30 light years from the Sun, it orbits its host star in 204 days, discovered by radial velocity methods by the CARMENES collaboration, which is all about finding planets around small stars. But look more deeply and you discover what makes this find provocative. GJ 3512 b turns out to be a gas giant with about half the mass of Jupiter, and small red dwarfs like this one aren’t supposed to host such worlds. In fact, GJ 3512 b is at least an order of magnitude more massive than what we would expect from current theoretical models, making it an interesting test case for planet formation. Core accretion models assume the gradual agglomeration of material in a circumstellar disk, with small bodies banging into each other and growing over time until their gravity is sufficient to draw in an atmosphere from the surrounding gas. This gas giant defies the model, evidently having formed directly from the disk through...

read more

Introducing ExoClock: An Open Call for Participation

Ongoing in Geneva is the joint meeting of the European Planetary Science Congress and the Division for Planetary Sciences of the American Astronomical Society. We can abbreviate the whole thing as EPSC-DPS 2019, and you can read more about it here. We'll track several stories here as they develop, but I notice that the European Space Agency's ARIEL mission, which is slated to make the first large-scale survey of exoplanet atmospheres, has been supporting a Data Challenge involving removing noise from exoplanet observations. So let's start there. The slant here is training computers to filter out errors in collecting exoplanet data caused by starspots and by instrumentation, with two winners, James Dawson (Team SpaceMeerkat), and Vadim Borisov (Team major_tom), announced yesterday in Geneva. All told, 112 teams registered for the competition, a heartening number illustrative of the growing interest in computational statistics and machine learning among exoplanet researchers. The top...

read more

Water Vapor Detection on a ‘Super-Earth’

We're beginning to probe the atmospheres of planets other than gas giants, a step forward that the next generation of space- and ground-based instruments will only accelerate. This morning we have word that the habitable zone 'super-Earth' eight times as massive as Earth orbiting the star K2-18 has been found to have water vapor in its atmosphere, making it the only exoplanet known to have water as well as temperatures that could sustain that water as a liquid on the surface. This is also our first atmospheric detection of any kind for a planet orbiting in the habitable zone of its star. Angelos Tsiaras (University College London Centre for Space Exochemistry Data) is lead author on this work, which appears today in Nature Astronomy: "Finding water in a potentially habitable world other than Earth is incredibly exciting. K2-18b is not 'Earth 2.0' as it is significantly heavier and has a different atmospheric composition. However, it brings us closer to answering the fundamental...

read more

Internal Pressure and Planet Formation

Our thinking on how planetary systems form includes the accretion of rocky bodies within a disk surrounding a young star, and we're examining such disks in numerous systems, such as the well studied Beta Pictoris. But the idea of accretion leaves many issues unsettled, such as what happens when large rocky bodies collide in the violent endgame of system formation. The Earth evidently underwent such a collision, with our own Moon being the tangible result. Caltech postdoc Simon Lock has been working with Sarah Stewart (UC-Davis) to study how such giant impacts unfold, running simulations of early planetary materials whose collisions can form bodies with masses between 0.9 and 1.1 Earth masses. The energy involved in such impacts is thought to allow, in some cases, the two colliding bodies to form a 'synestia,' or a rotating torus of planetary materials that will later cool into one or more spherical planets. The synestia is, however, but one outcome out of many produced by these...

read more

Spectroscopic Evidence of a Possible Exomoon

It shouldn’t surprise us that first discoveries can be extreme. Consider that the first main sequence exoplanets we detected were ‘hot Jupiters.’ Nobody expected these (unless you discount John Barnes and Buzz Aldrin in Encounter with Tiber, and Greg Matloff, who advised them -- see Probing Ultrahot Jupiters -- but a radial velocity detection is rendered far more likely if a large planet is orbiting close to its star. And so we got 51 Pegasi b, and soon, others in the hot Jupiter category. Incidentally, the Barnes & Aldrin novel was finished though not published when the discovery of 51 Pegasi b was made in 1995. Nice prediction! Hot Jupiters may not be all that common, but they show up in early radial velocity work. I could throw in the first exoplanets of another kind as well, these being planets around a pulsar. Who, as Isidor Rabi once said about muons, ordered that? Extreme objects that push hard enough on their environment to be flagged by our current instrumentation are of...

read more

HR 5183 b: Pushing Radial Velocity Techniques Deeper into a Stellar System

Radial velocity methods for detecting exoplanets keep improving. We've gone from the first main sequence star with a planet (51 Pegasi b) in 1995 to over 450 planets detected with RV, a technique that traces minute variations in starlight as a star nudges closer, then further from us as it is tugged by a planet. Radial velocity, then, sees gravitational effects while not directly observing the planet, which may in some cases be studied by its transits or direct imaging. Image: 51 Pegasi b, also called "Dimidium," was the first exoplanet discovered orbiting a star like our sun. This groundbreaking find in 1995 confirmed that planets around main sequence stars could exist elsewhere in the universe. Credit: NASA. Transit methods have accounted for more planets, but radial velocity techniques are increasingly robust and continue to provide breakthroughs. Consider this morning's news about HR 5183, which is now known to be orbited by a gas giant designated HR 5183 b. Astronomers at the...

read more

Upwelling Oceans: Modeling Exoplanet Habitability

We usually talk about habitability in binary form -- either a planet is habitable or it is not, defining the matter with a 'habitable zone' in which liquid water could exist on the surface. Earth is, of course, the gold standard, for we haven't detected life on any other world. But it is conceivable that there are planets where conditions are more clement than our own, as Stephanie Olson (University of Chicago) has recently pointed out. The work, presented at the just concluded Goldschmidt Geochemistry Congress in Barcelona, models circulatory patterns in oceans, some of which may support abundant life if they exist elsewhere. The emphasis here is not so much on surface ocean currents but upwelling water from deep below. Says Olson: "We have used an ocean circulation model to identify which planets will have the most efficient upwelling and thus offer particularly hospitable oceans. We found that higher atmospheric density, slower rotation rates, and the presence of continents all...

read more

LHS 3844b: Rocky World’s Atmosphere Probed

These days we have a keen interest in small red dwarf stars (M-dwarfs) not only because they're ideal for study, with deep transits of worlds in their habitable zones and the prospect of future analysis of their atmospheres, but also because they are so plentiful. Comprising perhaps 80 percent of all stars, they may well be home to the great majority of planets in the galaxy. And while they are common, they're also long-lived, so that life would have plenty of opportunity to develop. Now we have word of new work using both the Transiting Exoplanet Survey Satellite (TESS) and the Spitzer Space Telescope. TESS is, of course, a transit hunter, looking for the telltale dips in light from a parent star when a planet passes in front of it. The planet in question is LHS 3844b, about 48.6 light years out, and discovered by TESS in 2018. Follow-up observations in the infrared with Spitzer have detected light from the surface of this newly discovered world, allowing study of its atmosphere and...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives