Gravitational lensing is a technique rich enough to help us study not only distant galaxies but exoplanets around stars in our own Milky Way. As gravity warps space and time, light passing near a massive object takes the shortest route, from our perspective seeming to be bent by the gravitational field. Inside the Milky Way, such effects are referred to as 'microlensing,' capable of magnifying the light of a more distant object and sometimes revealing the presence of an unseen planet around the intervening star. Now we have a Kepler find with implications for binary stars. Working with Eric Agol at the University of Washington, graduate student Ethan Kruse has discovered a 'self-lensing' white dwarf eclipsing binary system. He made the find while looking for transits in the Kepler data, the signatures of planets crossing in front of their stars as seen from Earth. KOI-3278 turned out to have an unusual signal, says Kruse: "I found what essentially looked like an upside-down planet....
Two Takes on Habitability
Last week's announcement about Kepler-186f presented a world that is evidently in the outer reaches of its star's habitable zone, with the usual caveats that we know all too little about this place to draw any conclusions about what is actually on its surface. Is it rocky, and does it have liquid water? Perhaps, but as Greg Laughlin (UC-Santa Cruz) points out on his systemic site, the widely circulated image of Kepler-186f was all but photographic in its clarity. Listen to Laughlin as he looks at the image: I stared at it for a long time, tracing the outlines of the oceans and the continents, surface detail vivid in the mind's eye. Yes, ice sheets hold the northern regions of Kepler-186f in an iron, frigid grip, but in the sunny equatorial archipelago, concerns of global warming are far away. Waves lap halcyon shores drenched in light like liquid gold. He goes on to look at how the press has handled earlier stories on habitable planets, dating back to the Gliese 581c frenzy of 2007....
An Outward-Looking Grand Strategy
We use strategies to weigh the issues around us and maximize our chances for success. Can we create a strategy not just for a specific short-term goal but for the survival and growth of our entire species? In the essay that follows, Michael Michaud looks at the elements of such a vision, one that by necessity takes us out of our own biosphere and into the cosmos. As long-time Centauri Dreams readers know, Michaud is well suited to discussing the resolution of conflict and the attainment of goals. His lengthy career in the U.S. Foreign Service led to posts as Counselor for Science, Technology and Environment at U.S. embassies in Paris and Tokyo, and Director of the State Department's Office of Advanced Technology. He has also been chairman of working groups at the International Academy of Astronautics on SETI issues, and is the author of the highly regarded Contact with Alien Civilizations: Our Hopes and Fears about Encountering Extraterrestrials (Springer, 2007). By Michael A.G....
Kepler-186f: Close to Earth Size, in the HZ
We have another 'habitable zone' planet to talk about today, one not much bigger than the Earth, but it's probably also time to renew the caveat that using the word 'habitable' carries with it no guarantees. The working definition of habitable zone right now is that orbital distance within which liquid water might exist on the surface of a planet. Whether it actually does is just one of the questions. A second is whether or not we're in fact dealing with a rocky terrestrial world. So Centauri Dreams approaches the announcement of Kepler-186f with guarded enthusiasm for an exoplanet that looks interesting indeed. Five planets circle this star, an M-dwarf a great deal smaller and cooler than the Sun. Discovered by the Kepler space observatory, the planet presents us with transit information telling us that it is about 1.1 Earth radii, although we don't yet know what the mass of this world is, and hence can't make a definitive call on whether or not it is rocky. But Stephen Kane (San...
A New Look at Sea Floor Astrobiology
How do you produce life on an early Earth bathed in ultraviolet radiation? The presumption when I was growing up was that the combination of chemicals in ancient ponds, fed energy by lightning or ultraviolet light itself, would produce everything needed to start the process. Thus Stanley Miller and Harold Urey's experiments, beginning in 1953 at the University of Chicago, which simulated early Earth conditions to produce amino acids out of a sealed 'atmosphere' of water, ammonia, methane and hydrogen, with electrodes firing sparks to simulate lightning. But there are other ways of explaining life's origins, as a new study from the Jet Propulsion Laboratory and the Icy Worlds Team at the NASA Astrobiology Institute reminds us. Hydrothermal vents on the sea floor have been under consideration since the 1980s, with some researchers pointing to the 'black smokers' that produce hot, acidic fluids. The new NASA work looks at much cooler vents bubbling with alkaline solutions like those in...
Saturn: Commotion in the A Ring
After yesterday's look back at the ambitious Project Orion planners and their hopes of reaching Saturn's moons by the 1970s, let's stay in the same vicinity today to look at what may be the emergence of an entirely new moon. As always, we have Cassini to thank for this work, which shows a disturbance at the outer edge of Saturn's A ring. This is the outermost of the large, bright rings, with a width of approximately 14,600 kilometers. Its inner boundary is the Cassini division, a 4800 kilometer wide region between it and the B ring. The image below shows the disturbance, an area in the shape of an arc that is about 20 percent brighter than its surroundings. The region is some 1200 kilometers long and 10 kilometers wide, and it is accompanied by breaks in the otherwise smooth profile at the edge of the ring. The current thinking is that both the arc and the protuberances are the result of gravitational effects caused by a nearby object. Are the rings, then, giving birth to a new moon?...
Remembering ‘Saturn by 1970’
One day in the late summer of 1958, at a time when the Jet Propulsion Laboratory was still in the hands of the U.S. Army (the transfer to NASA wouldn't happen until the end of that year), Freeman Dyson and Ted Taylor showed up at the facility outside Pasadena. Try to imagine the scene: At the time, JPL was busy building the Explorer 6 satellite, all 65 kilograms of it. And here came two Project Orion scientists talking about not just satellites but auxiliary vehicles, additional payload to fly aboard their proposed 4000 ton spacecraft that they hoped would explore the outer planets. "The reception there was rather cool," Dyson would later say. "The lady at the front office decided Taylor and I were a pair of crackpots and tried to get rid of us. After about half an hour of arguing we got inside and then it all went very well." Image: Freeman Dyson, whose payload ideas must have confounded the team working on early Earth satellites. Credit: Courtesy of Princeton University Archives....
Digging into the Late Heavy Bombardment
The Barberton greenstone belt is considered one of the oldest pieces of continental crust on the planet. About 100 kilometers long and 60 kilometers wide, the belt is in South Africa east of Johannesburg and not far from the border of Swaziland, a region where gold was first discovered in South Africa. Greenstone belts, however, are numerous, widely distributed geographically and throughout geological history, all of them marked by the characteristic green hue imparted by the metamorphic minerals within their rocks. The Barberton greenstone belt is now yielding evidence of a massive ancient impact well over three billion years old. The paper on this work is slated to appear in the journal Geochemistry, Geophysics, Geosystems, where scientists will make the case that the impact they are tracking occurred 3.26 billion years ago at the end of the Late Heavy Bombardment, a period between three and four billion years ago when numerous large asteroids are thought to have struck the planet....
A Tantalizing Exomoon Possibility
Gravitational microlensing is a phenomenally interesting way to find unusual things in the cosmos. A closer star can bend space around itself enough that, when it passes between us and a more distant star, a distinct brightening of the distant star's light is apparent, a lens effect. That's a useful phenomenon in its own right, and gravitational lensing involving distant galaxies is a significant part of some astronomers' toolkits. But we can also use the effect when looking for exoplanets, and in the case of recent work, even a candidate for an exoplanet's moon. The method works in this context because if the foreground star has a planet orbiting it, a second lensing event can occur, and a comparison between the two brightening events can help us figure out the relative mass of the two objects. The problem with microlensing is that these are one-shot events, dependent on chance celestial alignments. In other words, we can't go back and study them a second time. That's a shame,...
ISEE-3: The Challenge of Long Duration Flight
Some mission concepts for interstellar flight demand equipment that can stay functional not just for decades but for centuries. Do we know how to build such things? Missions like Voyager are encouraging in that we have two spacecraft that were never built for the kind of longevity we've demanded of them, and we're still tracking their signals. But as Robert Forward once speculated, the problem may not be just in building the spacecraft, but in how we handle them. Forward's issue involved the changes on Earth that might occur over a long-duration spaceflight like the one he envisioned in Rocheworld (1984, first published as Flight of the Dragonfly). A crewed starship is actually on the way to Barnard's Star, dependent on the massive laser installations in the Solar System whose beam will allow it to decelerate (through 'staging' the sail) into the destination star system. But there is a movement afoot on Earth to shut down the beam, motivated by money, politics and the usual cast of...
Optimal Worldship Populations
Although we tend to focus on propulsion as the major obstacle to reaching another star, the biological problems that go along with journeys lasting decades or even centuries are equally daunting. If we could devise methods that would get us to Alpha Centauri within a century, we'd still face the need to keep a crew alive within a sustainable closed ecosystem for that amount of time. If we're talking humans in starships, then, we need a lot more data about how people interact in isolated communities, stay healthy, and manage critical self-sustaining systems. Image: A habitat for humans over generations, a worldship poses critical questions about survivability and genetic diversity. Credit: Adrian Mann. Centauri Dreams readers will recall Cameron Smith's interest in these matters, as reflected in his article Biological Evolution in Interstellar Human Migration, published here last March. The author of Emigrating Beyond Earth: Human Adaptation and Space Colonization (Springer, 2012),...
On the Enceladus Ocean
The recent news about an ocean on Enceladus had me thinking over the weekend about a trip my wife and I took years ago to Michigan's Upper Peninsula. There we had rented a cabin for the week on the shores of Lake Superior, twenty miles from the nearest town, unless you counted the small grocery store, art gallery and scattered houses up the highway as a town -- if so, it was a tiny one. Looking out across the silver and gunmetal gray waves of Superior, you could imagine it an ocean, a cold, frothing place of treacherous currents and, that October, raw winds. Lake Superior appears as the comparison in many of the reports on the Enceladus findings as they sketch out what appears to be a sea just as large, perhaps ten kilometers deep covered by an ice shell four times as thick. Given that the well known plumes of Enceladus are already known to contain organic molecules in addition to salty water, the inevitable question arises: Could some form of life exist beneath this frozen surface?...
Woven Light – Proteaa
Heath Rezabek is concerned with information -- how we uncover it, how we use it, how we store it against cataclysmic events. A librarian and futurist, Heath uses science fiction to explore how Vessels of preserved knowledge might be developed and maintained not only on Earth but in the far reaches of our Solar System and beyond. In today's work, he traces resource discovery and archival technologies back as far as Vannevar Bush and forward into a future that has transformed our early experiments into endlessly morphing realms of human growth and preservation. by Heath Rezabek This is the fourth installment in a continuing series of speculative fiction here on Centauri Dreams. Feedback from prior installments helps shape the themes and direction of subsequent entries, but the purpose and focus of these pieces is to explore a timeline (or timelines) in which comprehensive, resilient archives of Earth's biological, scientific, and cultural record — deep archives for deep time...
Small Payloads to the Stars
Making things smaller seems more and more to be a key to feasibility for long-haul spaceflight. Recently I went through solar sail ideas from the 1950s as the concept made its way into the scientific journals after an interesting debut to the public in Astounding Science Fiction. We also discussed Sundiver missions taking advantage of a huge 'slingshot' effect as a sail skims the photosphere. These could yield high speeds if we can solve the materials problem, but the other issue is making the payload light enough to get maximum benefit from the maneuver. It puzzles me that in an age of rapid miniaturization and increasing interest in the technologies of the very small, we tend to be locked into an older paradigm for starships, that they must be enormous structures to maintain a crew and carry out their scientific mission. Alan Mole's recent paper reminds us of an alternative flow of work beginning in the 1980s that suggests a far more creative approach. If we're going to...
The Probe and the Particle Beam
For those wanting to dig deeper into Alan Mole's 1 kilogram interstellar colony probe idea, the author has offered to email copies of the JBIS paper -- write him at RAMole@aol.com. For my part, writing about miniaturized probes with hybrid technologies inevitably calls to mind Freeman Dyson, who in his 1985 title Infinite in All Directions (Harper & Row) discussed a 1 kilogram spacecraft that would be grown rather than built. Here's Greg Matloff's description of what Dyson whimsically called 'Astrochicken': Genetically engineered plant and animal components would be required in Astrochicken. Solar energy would power the craft in a manner analogous (or identical) to photosynthesis in plants. Sensors would connect to Astrochicken's 1-gm computer brain with nerves like those in an animal's nervous system. This space beast might have the agility of a hummingbird, with 'wings' that could serve as solar sails, sunlight collectors and planetary-atmosphere aerobrakes. A chemical rocket...
Small Probes, Hybrid Technologies
Reducing the size of a starship makes eminent sense, and as we saw yesterday, Alan Mole has been suggesting in the pages of JBIS that we do just that. A 1 kilogram interstellar probe sounds like it could be nothing more than a flyby mission, and with scant resources for reporting back to Earth at that. But by Mole's calculation, a tiny probe can take advantage of numerous advances in any number of relevant technologies to make itself viable upon arrival. Just how far can nanotech and the biological sciences take us in creating such a probe? For what Mole proposes isn't just an automated mission that uses nano-scale 'assemblers' to create a research outpost on some distant world. He's talking instead about an actual human colony, one whose supporting environment is first guaranteed by nanobots and, in turn, the robots they build, and whose population is delivered through the hatching of human embryos or perhaps even more exotic methods, such as building humans from DNA formulae stored...
Interstellar Probe: The 1 KG Mission
Reading Charles Adler's Wizards, Aliens and Starships over the weekend, I've been thinking about starflight and cost. Subtitled 'Physics and Math in Fantasy and Science Fiction,' Adler's book uses the genres as a way into sound science, and his chapters contain numerous references to writers like Poul Anderson, Larry Niven and Robert Heinlein. On the matter of speculative propulsion systems, he lingers over fusion and describes the work of Project Daedalus back in the 1970s, when an ad hoc team of volunteer scientists and engineers put together a serious starship study. Like the vessels written about in the science fiction of that era and before, Daedalus was simply a mammoth craft -- 53 million kilograms! -- but that corresponded with what SF had been telling us all along. We would travel to the stars aboard vessels not so different from ocean liners, perhaps big enough to be livable on a daily basis, or at least big enough to pack thousands of humans into cryogenic containers for a...
Rosetta: Target in Sight
The European Space Agency's Rosetta spacecraft, having traveled for ten years, is on track for its close-up investigation of comet 67P/Churyumov-Gerasimenko to begin later this year. Three years ago we had the first actual image of the comet, a 13-hour exposure taken shortly before the craft entered a lengthy period of hibernation. On the 20th of January, Rosetta was 'awakened' and controllers are in the process of commissioning its onboard instruments. As part of the process, we have two 'first-light' images taken on March 20 and 21. Image: Comet 67P/Churymov-Gerasimenko in the constellation Ophiuchus. This image was taken on 21 March by the OSIRIS Narrow Angle Camera. The comet is indicated by the small circle next to the bright globular star cluster M107. The image was taken from a distance of about 5 million kilometres to the comet. A wide-angle image was taken on 20 March. Credit & copyright: ESA © 2014 MPS for OSIRIS-Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA. We're seeing...
Habitability: The Case for F-Class Stars
When it comes to habitable planets, we focus naturally enough on stars like our own. But increasing attention has been paid to stars smaller and cooler than the Sun. M-class dwarfs have small but interesting habitable zones of their own and certain advantages when it comes to detecting terrestrial planets. K-class stars are also interesting, with a prominent candidate, Alpha Centauri B, existing in our stellar back yard. What we haven't examined with the same intensity, though, are stars a bit more massive and hotter than the Sun, and new work suggests that this is a mistake. Manfred Cuntz (University of Texas at Arlington), working with grad student Satoko Sato, has been leading work on F-class stars of the kind normally thought problematic for life because of their high levels of ultraviolet radiation. Along with researchers from the University of Guanajuato (Mexico), Cuntz and Sato suggest that we take a closer look at F stars, particularly considering that they offer a wider...
A Dwarf Planet Beyond Sedna (and Its Implications)
Most Centauri Dreams readers are hardly going to be surprised by the idea that a large number of objects exist well outside the orbit of Pluto and, indeed, outside the Kuiper Belt itself. The search for unknown planets or even a brown dwarf that might perturb cometary orbits in the Oort Cloud has occupied us for some time, with the latest analysis of WISE findings showing that nothing larger than Jupiter exists out to a distance of 26,000 AU. Objects of Saturn size or larger are ruled out within 10,000 AU, according to the work of Kevin Luhman (Penn State) and team, whose study probed deeply into the Wide-field Infrared Survey Explorer's results. For more on all this, see WISE: New Stars and Brown Dwarfs. But the evidence for objects big enough to perturb the local neighborhood does persist, even if we have to scale down our expectations as to its size. A new paper in Nature reports the discovery of 2012 VP113, a dwarf planet that joins Sedna in orbiting entirely beyond the Kuiper...